
447

VISUALIZATION IN THE ERA OF
ARTIFICIAL INTELLIGENCE:

EXPERIMENTS FOR CREATING
STRUCTURAL VISUALIZATIONS

BY PROMPTING LARGE LANGUAGE MODELS

Hans-Georg Fill / Fabian Muff

Large Language Models (LLMs) have revolutionized natural language processing by
generating human-like text and images from textual input and can become a powerful
tool for many industries and applications, generating complex visualizations with mi-
nimal training. However, their potential to generate complex 2D/3D visualizations has
been largely unexplored. We report initial experiments showing that LLMs can generate
2D/3D visualizations that may be used for legal visualization. Further research is needed
for complex 2D visualizations and 3D scenes.

Table of contents
1. Introduction ..448

2. Prompts for Generating Two-Dimensional Visualizations450

3. Prompts for Generating Three-dimensional Visualizations451

4. Discussion ..455

5. Conclusion and Outlook ..456

References ..457

Hans-Georg Fill / Fabian Muff

448

1. INTRODUCTION

The creation and use of visualizations are common in many areas of science and practice.
In particular, the fi eld of legal visualization has a long historical tradition of using visu-
alizations to explain complex legal relationships and scenarios (Brunschwig, 2021). The
core advantage of visualization is that it provides a graphical representation of something
that would otherwise be diffi cult for humans to understand. It is thus a form of comple-
xity reduction, aiming at human comprehension and understanding. This can include
large data sets that are easier for humans to understand in visual formats, and where
certain properties of the data can only be discovered through visual means. Examples
range from visual representations of business data, as commonly used in statistics and
data analytics, to visualizations of medical data, e.g., to discover features in the human
body, or visualizations of sensor data and their extrapolations to create animated weather
maps (Fill, 2009). Visualization further includes visual representations of knowledge
for facilitating human communication, cf. (Eppler and Burkhard, 2006); (Fill, 2006). In
contrast to visualizations of data that are typically generated through algorithms, such
visualizations are created and curated by humans manually (Fill, 2007). Based on the
intended purpose of the visualization, they may be based on a formal or semi-formal
language – as typically used in conceptual modeling (Hoppenbrouwers et al., 2005) – or
may consist of ad-hoc compositions of shapes and drawings, e.g., as typically found in the
area of infographics, cf. (Dunlap and Lowenthal, 2016) or in structural legal visualization
(Cyras, Lachmayer, Lapin, 2015).

The creation of this latter type of visualization typically requires not only a deep unders-
tanding of the domain and scenario to be represented but also skills for using appropriate
tools and procedures (Brunschwig 2021); (Fill, 2007). These tools can range from drawing
tools that allow the creation of arbitrary shapes or the reuse and adaptation of existing
shapes, over modeling tools that require the use of pre-defi ned shapes and concepts, to
sophisticated dedicated visualization tools, e.g., for the creation of 3D representations
cf. (Fill, 2015). While standard drawing tools are fairly easy to operate, modeling and
specialized visualization tools often require signifi cant training to use them eff ectively.

With the recent emergence of highly capable large language models, this last aspect
can be addressed in previously unimagined ways, especially through creating computer

Visualization in the Era of Arti icial Intelligence

449

code in various languages (Lehmann, 2022). At their core, large language models are
trained on very large amounts of text so that they represent a probabilistic model of
word sequences (Jurafsky and Martin, 2023). Each word in the vocabulary of the lan-
guage model is thus assigned a probability that can follow a given input sequence or an
already generated sequence of words. Recent scientifi c and technological advances have
made it possible to increase the training sets for such language models to hundreds of
billions of parameters (Vaswani et al., 2017). In November 2022, the company OpenAI
made one large language model publicly accessible in the form of a dialogue system
called ChatGPT and a corresponding API. The underlying GPT language models have
been trained on more than 175 billion parameters and are not only able to generate
text sequences in diff erent styles based on input sequences in the form of prompts
but can also output code of programming languages and may soon be able to process
multi-modal data as well, e.g. images.

Recently, the application of these large language models has been explored in a variety
of domains to see how they can support the creation of text and code in various ways –
e.g., (Fill et al., 2023). Therefore, in the following, we report on some experiments we
have conducted to create visualizations using prompts to a large language model in the
form of GPT-41. The goal of these experiments was to explore which types of visualiza-
tions may be generated in this way, with the particular goal of supporting at some point
structural legal visualizations as used in legal informatics. Thereby we aim to contribute
to the discussion on how novel types of artifi cial intelligence can support visualizations
from a meta-perspective (Sreevalsan-Nair, 2023). The approach we use in the following
targets the generation of visualizations based on graphical primitives, i.e., using vector
graphics or programming code. This is in contrast to other approaches of using large
language models, for generating pixel graphics as done for example by Dall-E2.

We structure the experiments according to the following categories: a) two-dimensional
visualizations, b) simple three-dimensional visualizations for a web-based environment,
and c) complex three-dimensional visualizations for dedicated 3D modeling editors.
Thereby, the fi rst category aims at structural legal visualizations as typically generated

1 https://openai.com/research/gpt-4
2 https://labs.openai.com/

Hans-Georg Fill / Fabian Muff

450

today manually, e.g., in PowerPoint, whereas the second and the third category target
real three-dimensional visualizations, which are today being generated for example
using programming libraries such as three.js3 or the open-source 3D modeling toolkit
Blender4. The latter requires advanced knowledge of either programming or specialized
3D modeling software. Generating visualizations for these environments without this
knowledge seemed to us the most interesting use case.

2. PROMPTS FOR GENERATING TWO DIMENSIONAL
VISUALIZATIONS

The prompts we will show in the following were preceded by several trials to fi nd out
which type of instructions would lead to the most promising results. Further, it was
required to assess which type of code for describing visualizations could be generated
by GPT-4. Thereby we found that SVG (Scalable Vector Graphics) code, which is an open
standard for representing vector graphics, could be successfully generated by GPT-4.
Thus, the fi rst prompt we show was formulated as follows:

Prompt 1: Create the visualization of two trees that are connected by a black line in
SVG. Only show the code surrounded by triple backticks, do not add any explanation.

The result of this prompt is shown in Figure 1. We decided not to show the actual code
generated by GPT-4, but rather the result in the form of the resulting graphical repre-
sentation when the code is executed in an SVG viewer application. The last sentence of
the prompt refers to the display of the code result in the ChatGPT application, which
can be forced to display the code in a separate area with this command. The example
shows that the LLM can interpret the command and come up with a valid solution.
The type of prompt we used here is a so-called zero-shot prompt, which means that we
rely on information already known to the large language model, i.e., it already knows
about SVG code and how to create it. Nevertheless, it‘s fascinating that it can easily
produce an abstract representation of a tree in this format. In the next experiment we
stayed in the same session of the prompting and asked to modify the previous result
with the following prompt:

3 https://threejs.org/
4 https://www.blender.org/

Visualization in the Era of Arti icial Intelligence

451

Prompt 2: Change one tree to represent a fur with blue branches.

The result can be seen in Figure 2. It correctly modifi ed one tree and now shows a fur
with blue branches. The next alteration we wanted to conduct was to change the surroun-
ding of the trees. Thus we again stayed in the same session and executed this prompt:

Prompt 3: Put the two trees in the middle of a yellow lake.

As shown in Figure 3, the result was not quite what we intended. The entire background
of the image was now colored yellow. Of course, one could regard this as a valid result,
but we would have imagined something more like a yellow ellipse surrounding the trees.

Finally, as common for many structural legal visualizations, we tried to add text to the
previously generated image by the following prompt:

Prompt 4: Add the text „Paragraph 1“ below the left tree.

This worked equally well, as can be seen from Figure 4. The results we received via these
prompts for generating two-dimensional visualizations are already quite promising.

Figure 1: Result of
Prompt 1

Figure 2: Result of
Prompt 2

Figure 3: Result of
Prompt 3

Figure 4: Result of
Prompt 4

3. PROMPTS FOR GENERATING THREE DIMENSIONAL
VISUALIZATIONS

Thus, we advanced by trying to generate three-dimensional representations as well. We
found that GPT-4 is capable of generating valid code in the JavaScript programming
language. This language is very common in web-based environments today and can be
executed by all major web browsers. It also contains commands to access the WebGL
API, which allows the creation of three-dimensional visualizations whose rendering

Hans-Georg Fill / Fabian Muff

452

can be accelerated directly by graphic processing units. Therefore, we have provided
GPT-4 with the following prompt:

Prompt 5: Generate JavaScript code for displaying a simple house with yellow walls
and a red roof using WebGL. Surround the code by triple backticks and do not add
any explanation.

We then executed the resulting code in a standard Firefox web browser and took a
screenshot, shown in Figure 5. Despite the three-dimensional representation in the
code, the visualization shown only resembles a 2D image. We found that the mecha-
nisms for interacting with the three-dimensional representation were missing. This led
to the next experiment as shown in Prompt 6. Here, we reverted to the three.js API, an
open-source library for abstracting from the core WebGL code and making it easier to
describe three-dimensional scenes. GPT-4 is also capable of generating code for this API.

Prompt 6: Create the code for displaying a three-dimensional house on a website
using Three.js. The house shall have yellow walls and a red roof. It stands on a blue
lake, which is made of a material that refl ects objects. Add several lights to the scene.
Only display the code using triple backticks without any explanations.

The result of Prompt 6 is shown in Figure 6. Now, we can already better grasp the
three-dimensional nature of the scene. Although three.js does have mechanisms for
interacting with scenes, this has not been automatically added. So in Prompt 7, we
specifi cally asked to include an animation loop so that the scene would be animated.
Further, we asked for adding several lights to the scene. Although this prompt still does
not require programming knowledge, it requires familiarity with some concepts used
by three.js for displaying three-dimensional scenes.

Prompt 7: Create the code for displaying a three-dimensional house on a website using
Three.js. The house shall have yellow walls and a red roof. It stands on a blue lake,
which is made of a shiny material that refl ects objects. In front of the house there
is a fur tree. Add several lights to the scene. Add an animation loop to the scene so
that the camera fl ies in a circle around the house. Only display the code using triple
backticks without any explanations.

Visualization in the Era of Arti icial Intelligence

453

The result of Prompt 7 is shown in Figure 7. Now, the user sees an animated version
of the scene where the camera rotates around the house. Unfortunately, the requested
blue lake, which had been correctly included in previous iterations, was now missing
from this result as well as a correct tree representation.

Figure 5: Result of
Prompt 5

Figure 6: Result of
Prompt 6

Figure 7: Result of
Prompt 7

Although three.js is a very advanced API for displaying 3D scenes, it always has to be
embedded in the context of a website, which requires additional code to be generated.
Due to current limitations of the accessible versions of ChatGPT, the amount of code
that can be generated is rather limited. Therefore, we were interested in trying a more
effi cient approach. The open-source tool Blender is a full-fl edged three-dimensional
modeling and animation tool. It can be used to generate any kind of three-dimensional
representation, including videos of animations. It is freely available, well-documented,
and greatly supported by a large open-source community. In addition, Blender provides
a scripting interface based on the Python programming language. This allows almost all
of the tool‘s functionality to be accessed programmatically, i.e. by writing and executing
programming code rather than accessing the user interface. One typical use case for this
scripting interface is the creation of multiple 3D objects in particular arrangements,
which would require a lot of manual eff ort. For example, this approach would allow a
script to create hundreds of random three-dimensional objects without a single click.
For our purposes, we discovered that GPT-4 can generate valid Python code based on
the Blender libraries, which permits the generation of 3D scenes from natural language
descriptions. As shown in Prompt 8 we executed the following instruction:

Hans-Georg Fill / Fabian Muff

454

Prompt 8: Create the Python code for Blender for the following scene: There is a house
with a red roof and white walls with blue windows. The camera looks at the house
slightly from above and a point light points to the top of the roof. The house is placed
on a large white plane where shadows are casted by the point light. Only show the
code surrounded by triple backticks and do not add any explanation.

Figure 8: Scene generated by the Python scripting interface in Blender using the result

of Prompt 8.

This prompt generated Python code that could be directly executed using the scripting
interface of Blender. The result of the Blender user interface is shown in Figure 8. It
correctly displays a three-dimensional scene including a camera and a light, all with
the correct positioning. From there, this scene could be directly further extended or
modifi ed, or exported in a large variety of fi le formats, e.g., to integrate it in a PowerPoint
presentation. Although a user would still need to have the skills to do this in Blender,
the main step of creating the 3D objects did not require any knowledge of 3D modeling
at all, but was based on natural language statements.

Visualization in the Era of Arti icial Intelligence

455

Finally, we issued a more complex prompt for generating Python code for Blender. As
shown in Prompt 9, we added further objects to the scene and wanted to see how GPT-4
would represent a car with yellow windows.

Prompt 9: Create the Python code for Blender for adding the following items to the scene
above: A tree with a brown trunk and green leaves stands in front of the house. A blue car
with yellow windows stands next to the house. An arrow points from the car to the tree.
Only show the code surrounded by triple backticks and do not add any explanations.

The result of this prompt is shown in Figure 9. The tree is nicely modeled using a green
sphere and a brown cylinder representing the trunk of the tree. However, the car is very
abstract and is not recognizable, as is the arrow that we tried to add.

Figure 9: Result of the Blender scene created by Prompt 9.

4. DISCUSSION

The experiments permit several interesting insights into the current and future possibi-
lities of using large language models for generating structural visualizations. First, none
of the experiments required us to write a single line of code. Rather, the code was only
generated and then pasted into a corresponding execution environment (i.e., an SVG
viewer, the Browser, and the Blender Python scripting editor). It can be expected that
the further advancement of large language models will off er direct integration into such

Hans-Georg Fill / Fabian Muff

456

execution environments, e.g., via plugins for Blender that directly access the GPT API,
which would already be technically feasible today. Then, there would be a seamless tran-
sition from specifying scenes in natural language and viewing them in the corresponding
tool. In terms of the quality of the generated visualizations, we only showed prompts for
comparatively simple scenarios. We have also tried to describe more complex structural
legal visualizations, such as those available on Prof. Friedrich Lachmayer‘s website at
legalvisualization.com, but have not yet been able to assemble complex scenes based on a
textual description. It turned out that textual descriptions of visualizations that are precise
enough for code generation become quite extensive, especially for positioning objects to
each other in three-dimensional space. In such cases, it is still much easier to arrange
objects using the mouse. However, for creating 3D objects that can then be arranged, the
use of large language models seems an interesting option for the future as it also permits
users not experienced in the details of 3D modeling to create objects which can then
be positioned or scaled as needed for example. Unlike existing databases of 3D objects,
users can create their 3D objects and even textures in their own style without knowing
the technical details of the creation environment. For the two-dimensional models, the
use of large language models worked rather well. Although we still need to explore fur-
ther, which types of objects can be created in this way, the created visualizations already
showed a high degree of exactness and matched mostly very well the issued prompts.

5. CONCLUSION AND OUTLOOK

In this short paper, we reported on fi rst experiments for creating structural visualiza-
tions via large language models. The insights we gained may serve as inspiration for
further experiments by the legal visualization community. For example, in the future
one could imagine trying to create comics of legal scenarios in this way, or maybe even
animations for use in legal design. From our side, we plan to further investigate how large
language models can be trained or instructed in a way to better understand the diff erent
visualization formats and integrate them into conceptual visual modeling platforms.

Visualization in the Era of Arti icial Intelligence

457

REFERENCES

Brunschwig, C. R. (2021). Visual law and legal design: questions and tentative answers.
In Brunschwig, Colette R. “Visual Law and Legal Design: Questions and Tentative
Answers.” In Proceedings of the 24th International Legal Informatics Symposium IRIS
(pp. 179-230).

Čyras, V., Lachmayer, F., & Lapin, K. (2015). Structural legal visualization. Informatica,
26(2), 199-219.

Dunlap, J. C., & Lowenthal, P. R. (2016). Getting graphic about infographics: design
lessons learned from popular infographics. Journal of Visual Literacy, 35(1), 42-59.

Eppler, M. J., & Burkhard, R. A. (2004). Knowledge visualization: towards a new disci-
pline and its fi elds of application. Università della Svizzera italiana, URL: https://doc.
rero.ch/record/5196/fi les/1_wpca0402.pdf

Fill, H.-G. (2006): Semantic Visualization of Heterogenous Knowledge Sources, in: Hin-
kelmann, K., Reimer, U. (2006): Modellierung für Wissensmanagement - Workshop im
Rahmen der Modellierung 2006, Sonderdrucke der Fachhochschule Nordwestschweiz
2006-W01, ISBN 3-03724-086-5.

Fill, Hans-Georg (2007): On the Technical Realization of Legal Visualizations, in:
Schweighofer, E. et al. (eds.): 10 Jahre IRIS: Bilanz und Ausblick, Tagungsband des
10. Internationalen Rechtsinformatik Symposiums IRIS 2007, Boorberg, 463-467

Fill, H.-G. (2009). Visualisation for semantic information systems. Springer Science &
Business Media, DOI: https://doi.org/10.1007/978-3-8349-9514-8.

Fill, Hans-Georg (2015): Bridging Pictorial and Model-based Creation of Legal Visuali-
zations: The PICTMOD Method, in: Schweighofer, E., Kummer, F. and Hötzendorfer,
W.: Kooperation / Co-operation - Digitale Ausgabe zum Tagungsband des 18. Inter-
nationalen Rechtsinformatik Symposions IRIS 2015, Jusletter IT 26. Februar 2015

Fill, H..-G., Fettke, P., Köpke, J. (2023): Conceptual Modeling and Large Language Mo-
dels: Impressions From First Experiments With ChatGPT, Enterprise Modelling and
Information Systems Architectures (EMISAJ) – International Journal of Conceptual
Modeling, Vol. 3:1-15, DOI: https://doi.org/10.18417/emisa.18.3

Hans-Georg Fill / Fabian Muff

458

Hoppenbrouwers, S., Proper, H.A., van der Weide, T.P.: A fundamental view on the pro-
cess of conceptual modeling. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos,
J., Pastor, O. (eds.) Conceptual Modeling - ER 2005, 24th International Conference on
Conceptual Modeling, Klagenfurt, Austria, October 24-28, 2005, Proceedings. Lec-
ture Notes in Computer Science, vol. 3716, pp. 128–143. Springer (2005). https://doi.
org/10.1007/11568322 9

Jurafsky D., Martin J. H. (2023) Speech and Language Processing An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition,
Third Edition Draft, URL: https://web.stanford.edu/~jurafsky/slp3/

Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C., Stanley, K.O.: Evolution through
large models. CoRR abs/2206.08896 (2022). https://doi.org/10.48550/arXiv.2206.08896

Sreevalsan-Nair., J.: On metavisualization and properties of visualization. In: Proceedings
of the 18th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications - IVAPP,. pp. 230–239. IN STICC, SciTePress (2023).
https://doi.org/10.5220/0011794300003417

Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L.,
Polosukhin I. (2017) Attention is All you Need. In: Guyon I., Luxburg U. v., Bengio S.,
Wallach H. M., Fergus R., Vishwanathan S. V. N., Garnett R. (eds.) Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, DOI:
https://doi.org/10.48550/arXiv.1706.03762

